
Implementation of Service Function Chaining
Control Plane through OpenFlow

Gianluca Davoli, Walter Cerroni, Chiara Contoli, Francesco Foresta, Franco Callegati
DEI - University of Bologna, Italy

Email: {gianluca.davoli, walter.cerroni, chiara.contoli, francesco.foresta, franco.callegati}@unibo.it

Abstract—This papers describes a proof-of-concept implemen-
tation of the Service Function Chaining Control Plane, exploiting
the IETF Network Service Header approach. The proposed
implementation combines the OpenFlow protocol to control and
configure the network nodes and the NSH method to adapt the
service requirements to the transport technology. The manuscript
shows that the result of this combination is a very general
architecture that may be used to implement any sort of Service
Function Chain with great flexibility.

I. INTRODUCTION

With the recent widespread adoption of virtualization tech-

nologies and network overlays, many network components,

including forwarding devices, servers and applications, have

undergone significant changes. Nevertheless, the way services

are deployed into a network remained substantially unchanged,

impacting the speed at which critical applications can be

deployed, and significantly increasing operational costs for

network operators.

The expression Service Function Chaining (SFC) is gener-

ally used to describe the deployment of composite services that

are obtained from a concatenation, i.e., a chain, of one or more

basic services. In other words, a SFC1 is fundamentally the

series of service functions that a packet or flow must traverse.

Deploying a SFC in traditional infrastructures requires signifi-

cant configuration and management efforts on vendor-specific

appliances. As a consequence, Virtualized Network Func-

tions (VNFs) and the Network Function Virtualization (NFV)

paradigm [1] are attracting the interest of operators because

they promise a decoupling of the logical functionalities from

the underlying hardware, with potential significant reductions

in CAPEX and OPEX. At the same time, the deployment of

SFCs can make use of Software Defined Networking (SDN)

principles for efficient and flexible control and management

purposes [2].

SFC makes use of a service-specific overlay that creates the

required service topology. Therefore SFC inherently defines a

Service Plane, that is an intermediate plane between Appli-

cation and Control Planes. The Service Plane includes all the

processes that allow the infrastructure to provide services to

users and maintains state on those services, relying on Control

and Management Plane functions to suitably program the Data

Plane.

1In this manuscript the SFC acronym will be used to refer to both Service
Function Chaining and Service Function Chain, depending on the context.

Several aspects of SFC are currently being investigated by

the research community. SFC Orchestrators to deploy SFCs

as well as control their activity and make adjustments are

introduced in [3]. The problem of allocating physical resources

to data plane components of a SFC is addressed in [4], while

a solution for the trade-off between optimized performances

and resource cost in SFC deployments is presented in [5].

A very important problem in the implementation of the

SFC Orchestrator arises when the chain spans several network

domains with non homogeneous forwarding technologies. This

problem was addressed by the Internet Engineering Task Force

(IETF) in [6], where it is suggested that the service-specific

overlay can be obtained by applying packet encapsulation.

One option being considered by IETF is the so-called Network
Service Header (NSH) [7], which intends to provide a flexible,

dynamic, and transport-independent SFC solution for the data

plane. The NSH draft focuses on data plane aspects only, and

very little has been said about a possible SFC control plane

solution. To the best of our knowledge, the only document

that attempts to do so is another IETF draft that, at the time

of writing, has already expired [8].

In this paper we propose a possible implementation of a

NSH-aware control plane inspired by the concepts discussed in

[8]. Our approach is based on the use of SDN-like technology

inside NSH nodes and on the adoption of the OpenFlow

protocol for the communication between the SFC Control

Plane and the Service Plane components. We present here the

main idea and a preliminary proof of concept.

The rest of the paper is structured as follows. In Section II

we briefly recall the SFC Architecture. Then, in Section III we

propose our solution for the implementation of SFC Control

Plane functionality. In Section IV we show some experimental

validation of our proposal, before presenting our conclusions

in Section V.

II. SERVICE FUNCTION CHAINING ARCHITECTURE

The SFC architecture introduces some important concepts

that we briefly mention here [6]. The Service Function Path
(SFP) is a specification of the path to be followed by packets

assigned to a certain SFC. It is an abstraction of the sequence

of nodes the packets requiring a given service will traverse.

On the other hand, the SFC encapsulation (SFC-En) always

provides SFP identification and can optionally provide further

information. It is used by the SFC-aware functions to realize

the Service Plane functionalities, but it is not used for packet

2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)

978-1-5386-3285-7/17/$31.00 ©2017 IEEE

Authorized licensed use limited to: National Chung Cheng University. Downloaded on July 06,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

forwarding through the underlying network topology. Carrying

the SFC-encapsulated traffic is the task of the chosen network

transport protocol.

The main components of the SFC Service Plane are:

• SFC Classifiers (SFC-Cl), which classify the incoming

traffic based on predefined policies, in order for the flow

to be steered through the required set of network service

functions; the main task for the SFC-Cl is to add the

SFC-En, which is then removed by the last node in

the SFP, or by a SFC-aware function that consumes the

packet;

• Service Functions (SF), which are the basic elements

of a chain, and are responsible for a specific treatment

of received packets; they can act at different levels of

the protocol stack, and they can be implemented either

as virtual elements hosted by a server, or as physical

equipment with specialized hardware; a SF can be either

SFC-aware (i.e., able to act on SFC-encapsulated packets)

or SFC-unaware (i.e., it must receive only packets without

SFC encapsulation);

• Service Function Forwarders (SFF), which are responsi-

ble for forwarding traffic to one or more connected SFs

according to information carried in the SFC-En; they can

also terminate the SFP;

• SFC Proxies (SFC-Pr), which remove and insert SFC-

En on behalf of SFC-unaware SFs, before and after their

action, respectively.

The reference architecture of the SFC Control Plane

(SFC-CP) described in [8] defines the following interfaces to

communicate with Data Plane components:

• interface C1, between SFC-CP and SFC-Cl, used to

manage SFC classification rules in classifiers;

• interface C2, between SFC-CP and SFF, used for

exchanging required information for SFC forwarding

decision-making, collect state information on SFPs, etc.;

• interface C3, between SFC-CP and SFC-aware SF, used,

for example, to collect output information resulting from

the processing of packets in the SF;

• interface C4, between SFC-CP and SFC Proxies, used

to communicate SFC instructions and to retrieve state

information.

The deployment of SFCs must take into account complex

aspects that must be handled carefully, as reported in [9]. Such

aspects include topological dependence, consistent ordering of

SFs, and dynamic SFC classification. Moreover, end-to-end

SFCs are typically deployed across multiple network admin-

istrative and/or geographical domains.

The SFC Architecture can be implemented by making use

of NSH, which defines a Service Plane protocol, specific for

the creation of dynamic SFCs. It provides SFP identification,

transport-independent chaining, and packet-based network and

service metadata. NSH is designed to be easy to implement

across a range of devices, both physical and virtual, including

hardware platforms.

The two most important fields in the NSH header are the

Service Path Identifier (SPI) and the Service Index (SI). The

SPI is a 24-bit integer number assigned to packets by the first

SFC-Cl in the SFP, and all nodes taking part in that SFP must

use the same SPI consistently. The SI, an 8-bit integer number,

is used to identify the location within the SFP. The SI must

be set by the initial SFC-Cl either to its maximum value (i.e.,

255) or to a value related to the length of the SFP, and it must

be decremented by one unit by all SFC-aware SFs and SFC

Proxies the packet traverses in the SFP.

III. OPENFLOW-BASED NSH CONTROL PLANE

The reference scenario for the proposed NSH control plane

is shown in Fig. 1. It is composed of a SFC-CP entity, a pair

of SFC-Cls, an intermediate node serving as both SFF and

SFC-Pr towards SFC-unaware SFs, a SFC-aware SF, and two

SFC-unaware SFs. In our reference implementation we assume

that each Service Plane entity is built around an OpenFlow-

capable switch (OF-S). Then, all SFC entities are intercon-

nected by means of a tunneling technology (e.g., VXLAN)

through an underlying network infrastructure, controlled by

one or multiple network operators through a generic control

plane paradigm. The network infrastructure can use either

SDN or non-SDN control, but this does not matter because the

proposed SFC-CP is separate from the network control plane.

Therefore, service providers and network providers can act
as completely independent entities, each adopting its favorite
control plane approach.

Mapping a SFP to the transport network requires to define

a relationship between a given position in the SFP (i.e., a

SPI/SI pair) and a certain next-hop in the underlying network.

While the former information belongs to the Service Plane, the

latter depends on the network’s topology and technology, as it

must point to an existing location in the underlying network,

typically expressed as an address (e.g., IP or MAC). How

to implement this mapping is not a matter of standardization

and different solutions may be adopted. This paper introduces

a mapping strategy that, to the best of our knowledge, has

not been proposed yet. It is a rather straightforward idea:

mapping the SFP-to-transport relationship onto the ports of
the employed OF-S.

In our implementation, each NSH interface, corresponding

to a specific SPI/SI pair, is bridged to a port on the node’s

internal OF-S. The working principle of the proposed imple-

mentation is the following: through the association of SPI/SI

pairs to ports on a OF-S, it is possible to have the node

acting as a NSH Service Plane component while controlling

it through the OpenFlow protocol from an SDN Controller,

which takes the role of SFC Control Plane entity (SFC-Co)

running applications that enforce Service Plane policies.

The NSH mapping tables are therefore implemented in the

form of flow tables inside the OF-S. As an example, assume

port N of the OF-S is bridged to interface nshM of the node.

Instructing the switch to send traffic out of port N will result

in the node sending NSH-encapsulated traffic out of interface

nshM with the corresponding SPI/SI values. Therefore, de-

pending on what kind of flow rules are installed in the internal

OF-S, a SFC node can be programmed to perform different

2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)

Authorized licensed use limited to: National Chung Cheng University. Downloaded on July 06,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

SFC Control Plane

SF SF
WEST

C1 / C2 C2 / C4

Legend

: Ethernet : NSH

: generic network

: OF-capable switch

C1 / C2

Service Plane entities
(1) : SFC Classifier / SFF
(2) : SFF / SFC Proxy and SFC-unaware SFs
(3) : SFC Classifier / SFF
(4) : SFC-aware SF

(1) (2) (3)

C3

(4)

(0)

EAST

SF

Fig. 1. Reference scenario: the role of Nodes (1) to (4) is shown in the upper left corner.

Service Plane entity functions. With reference to Fig. 1, the

entities are mapped to the nodes in the following way:

• Node (0) hosts the SFC-Co.

• Node (1) is responsible for adding the NSH tag

to packets coming from WEST hosts and forwarding

NSH-encapsulated packets to the first SFF in the SFP:

in this role, it acts as SFC-Cl. Additionally, this node is

also responsible for removing the NSH tag from packets

assigned to a SFP which ends at Node (1), such as packets

destined to WEST hosts, thus acting as SFF. Following

this approach, the SFC classification is as expressive as

OpenFlow matching is.

• Node (2) is responsible for handling the NSH encapsu-

lation on behalf of SFC-unaware SFs, as well as for for-

warding the NSH-encapsulated packets to the following

SF or SFF in the SFP. In those two tasks, Node (2) acts

as SFC-Pr and SFF, respectively.

• Node (3), similarly to Node 1, acts both as SFC-Cl and

SFF for the traffic exchanged with EAST hosts.

• Node (4) acts as a SFC-aware SF, as it is able to receive

NSH-encapsulated packets from the SFF and process

them, before sending them back to the SFF after updating

the SI.

IV. EXPERIMENTAL VALIDATION

A. Test bed setup

As a proof of concept, we developed a test bed to implement

the proposed solution, based on the reference scenario illus-

trated in Fig. 1. The test bed comprises a total of five Virtual

Machines (VMs) and the interconnecting virtual networks. The

VMs are deployed on a single physical server, and virtual-

ization is managed through libvirt/KVM. All of the involved

VMs run Ubuntu 14.04 LTS. One of them hosts an instance

of the ONOS SDN Controller [10], while the remaining four

VMs implement NSH-capable nodes. The choice of ONOS

as SDN Controller (therefore, in this test bed, as SFC-Co)

is motivated by its availability of Java and REST APIs, as

well as of a well-documented Command Line Interface (CLI)

and Graphical User Interface (GUI), which allow for easier

monitoring of the controller’s activities. However, this choice

does not affect the generality of the implementation.

On each NSH node we installed and enabled the open-

source NSH kernel module [11]. We assigned a SPI/SI pair to

each NSH interface, and mapped each of them to a transport-

level next-hop (i.e., an IP address), instructing the node to

use VXLAN as encapsulation protocol to obtain the overlay

topology. This is equivalent to adding an entry in the NSH-

to-transport mapping table specifying that all traffic addressed

to the endpoint with that SPI/SI should be encapsulated in

VXLAN packets and sent to the specified remote IP address.

Similarly each NSH interface was made aware of the inbound

SPI/SI values it is meant to receive. Thus the mapping was

achieved for outgoing and incoming traffic.

The transport network infrastructure will be traversed by as

many VXLAN tunnels as the number of SPI/SI pairs defined.

Each packet sent out by the VMs over one of their NSH

interfaces will be intercepted by the NSH kernel module and

encapsulated in a NSH/VXLAN packet, obtaining the SPI/SI

pair assigned to the NSH interface. Similarly, when a packet

is received on one of the NSH interfaces, the kernel module

will intercept it and remove the NSH/VXLAN encapsulation,

before handling the packet to the traditional IP forwarding

module of the VM.

As outlined above the NSH nodes were created exploiting

the Open vSwitch bridge (OvS) as internal OF-S, programmed

by the SFC-Co. We attached the previously defined NSH

logical interfaces to the OvS ports. The WEST and EAST
hosts as well as the SFC-unaware SFs were implemented as

logically isolated virtual entities by means of Linux network

namespace technology. We implemented the full set-up de-

picted in Figure 1. As SFC-unaware SFs, we deployed a Deep
Packet Inspector (DPI) and a Traffic Controller/Shaper (TC),

2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)

Authorized licensed use limited to: National Chung Cheng University. Downloaded on July 06,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

the latter configured with two Layer-2 interfaces (inbound

and outbound). The SFC-aware SF is an Integrity Checker
(IC). The WEST hosts represent users wishing to communicate

with the EAST hosts with different priorities and the following

service policies:

• traffic coming from user WEST1 should be first checked

by the DPI and then copied in the IC;

• traffic coming from user WEST2 should be first checked

by the DPI and then limited in bandwidth by TC.

Therefore, three possible SFCs are needed with their respec-

tive SFPs:

• SFC1, from any WEST user to the destination EAST user,

duplicating the traffic towards the DPI;

• SFC2, from a high-priority WEST user to the destination

EAST user, passing through the IC;

• SFC3, from a low-priority WEST user to the destination

EAST user, passing through TC for bandwidth limitation.

B. Proof-of-Concept validation

We deployed a basic orchestrator (implemented as a script

emulating an orchestrator’s interaction with ONOS) in the

SFC-Co node, which accomplishes the desired dynamic SFC

behavior. The orchestrator installs proactive flow rules in the

OF-S internal to relevant SFC entities, so as to apply chain

SFC1. Then, it waits for any WEST user to start a flow of

traffic towards the destination EAST user. When the flow

starts, the orchestrator starts the DPI, and after a small time

period, it retrieves information from it. If the inspected traffic

contained data from WEST1, the script installs rules applying

SFC2, otherwise, if the traffic contained data from WEST2,

the script installs rules applying SFC3. It should be noted that

traffic flows are steered to a different SFP without stopping

them, thus achieving dynamic SFC.

The WEST-to-EAST throughput measured at the OF-S

within Node (2) while applying the different SFCs is shown in

Fig. 2. At first, SFC1 is applied to traffic from WEST1 (from

t = 8s to t = 20s), then after inspection SFC2 is applied (from

t = 21s to t = 38s). Later on, traffic from WEST2 is subject

to SFC1 (from t = 53s to t = 65s), then after inspection

SFC3 with shaping is applied (from t = 66s to t = 84s). This

outcome proves the correct implementation of dynamic SFC

in our test bed.

V. CONCLUSION

The SFC Control Plane solution proposed in this paper is

based on the SDN paradigm. In particular, assuming SFC

entities that are built around an OpenFlow-capable switch

we can take advantage of SDN’s inherent dynamicity and

programmability also in the Service Plane, while keeping

it independent of the underlying network infrastructure. An

interesting by-product is that network providers and service

providers can adopt completely separate Control Plane so-

lutions. We validated our approach on a test bed emulating

multiple SFC entities interconnected by non-SDN networks

under dynamic chaining scenarios.

Fig. 2. WEST-to-EAST throughput measured at the OF-S within Node (2)
while applying dynamic SFC.

ACKNOWLEDGMENT

The authors would like to thank Ms. Chiara Di Nenno, for

her contribution in the development of a shared knowledge on

the NSH Control Plane. This work has been partially supported

by project “GAUChO - A Green Adaptive Fog Computing and

Networking Architecture,” funded by the Italian Ministry of

Education, University and Research (MIUR) under the “PRIN

Bando 2015” program, grant no. 2015YPXH4W 004.

REFERENCES

[1] “Network Functions Virtualisation (NFV); Architectural Framework,”
The European Telecommunications Standards Institute (ETSI), October
2013. [Online]. Available: http://www.etsi.org/technologies-clusters/
technologies/nfv

[2] F. Callegati, W. Cerroni, C. Contoli, R. Cardone, M. Nocentini, and
A. Manzalini, “SDN for dynamic NFV deployment,” IEEE Communi-
cations Magazine, vol. 54, no. 10, pp. 89–95, October 2016.

[3] A. M. Medhat, G. A. Carella, M. Pauls, M. Monachesi, M. Corici, and
T. Magedanz, “Resilient orchestration of Service Functions Chains in
a NFV environment,” in 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), Nov 2016,
pp. 7–12.

[4] M. T. Beck, J. F. Botero, and K. Samelin, “Resilient allocation of Service
Function Chains,” in 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), Nov 2016,
pp. 128–133.

[5] T. Soenen, S. Sahhaf, W. Tavernier, P. Skldstrm, D. Colle, and M. Pick-
avet, “A model to select the right infrastructure abstraction for Service
Function Chaining,” in 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), Nov 2016,
pp. 233–239.

[6] J. M. Halpern and C. Pignataro, “Service Function Chaining
(SFC) Architecture,” RFC 7665, Oct. 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc7665.txt

[7] P. Quinn and U. Elzur, “Network Service Header,” Internet Engineering
Task Force, Internet-Draft draft-ietf-sfc-nsh-12, Feb. 2017, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-sfc-nsh-12

[8] M. Boucadair, “Service Function Chaining (SFC) Control Plane
Components,” Internet Engineering Task Force, Internet-Draft draft-
ietf-sfc-control-plane-08, 2016, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-control-plane-08

[9] T. Nadeau and P. Quinn, “Problem Statement for Service Function
Chaining,” RFC 7498, Apr. 2015. [Online]. Available: https://rfc-editor.
org/rfc/rfc7498.txt

[10] ONOS: Open Network Operating System. [Online]. Available:
http://onosproject.org

[11] Network Service Header Linux kernel module implementation. [Online].
Available: https://github.com/upa/nshkmod

2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)

Authorized licensed use limited to: National Chung Cheng University. Downloaded on July 06,2020 at 09:43:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

